
Građevinar 11/2024

979

Primljen / Received:

Ispravljen / Corrected:

Prihvaćen / Accepted:

Dostupno online / Available online:

GRAĐEVINAR 76 (2024) 11, 979-991

Authors:

Pavement condition detection using acceleration 
data collected by smartphones based on 1D 
convolutional neural network

DOI: https://doi.org/10.14256/JCE.3958.2024

22.1.2024.

24.7.2024.

2.9.2024.

10.12.2024.

Research Paper
Yudong Han, Zhaobo Li, Jiaqi Li
Pavement condition detection using acceleration data collected by smartphones 
based on 1D convolutional neural network

Vibration-based pavement condition detection methods have advanced in recent years, and 
it has been proven to be feasible to identify pavement conditions by analysing acceleration 
data. In this study, a public participation solution is proposed, and a one-dimensional 
convolutional neural network (1D-CNN) is introduced to directly process acceleration 
signals, addressing the limitations of traditional machine-learning classification methods. 
In this study, a smartphone and bicycle were used as the experimental tools, and 422 
samples of acceleration data across the X-, Y-, and Z-axes were collected, including four 
types of pavement conditions: bumpy pavement, speed bumps, smooth pavement, and 
potholes. Five types of 1D-CNN with different activation functions and network structures 
were designed to classify the data and were compared with machine learning algorithms, 
including support vector machine (SVM) and radial basis function (RBF) neural networks. 
The results show that a 1D-CNN, with three convolution layers and three pooling layers 
using the ReLU activation function, achieved the best classification performance, with a 
classification accuracy of 0.9976. Compared with SVM and RBF neural networks, CNN 
not only saves considerable time by eliminating manual feature extraction operations 
but also provides higher classification accuracy. 
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Prethodno priopćenje
Yudong Han, Zhaobo Li, Jiaqi Li
Utvrđivanje stanja kolnika pomoću podataka o ubrzanju prikupljenih pametnim 
telefonima na temelju 1D konvolucijske neuronske mreže

Posljednjih je godina postignut napredak metoda utvrđivanja stanja kolnika na temelju 
vibracija i dokazano je da je moguće utvrditi stanje kolnika analizom podataka o ubrzanju. 
U ovom se radu predlaže sudjelovanje javnosti u prikupljanju podataka i uvedena je 
jednodimenzijska konvolucijska neuronska mreža (1D-CNN) za izravnu obradu signala 
ubrzanja kako bi se otklonila ograničenja tradicionalnih metoda kategoriziranja strojnim 
učenjem. U ovom istraživanju kao alati za ispitivanje upotrijebljeni su pametni telefon i 
bicikl, a prikupljena su 422 uzorka podataka o ubrzanju duž X, Y i Z osi, uključujući četiri 
tipa stanja kolnika: neravan kolnik, kolnik s uspornicima (tzv. ležećim policajcima), ravni 
kolnik i kolnik s udarnim rupama. Projektirano je pet tipova mreže 1D-CNN-a s različitim 
funkcijama za aktivaciju i mrežnim strukturama za klasifikaciju podataka i uspoređeno je s 
algoritmima za strojno učenje, uključujući neuronske mreže stroja potpornih vektora (SVM) 
i radijalne bazne funkcije (RBF). Rezultati pokazuju da je jednodimenzijska konvolucijska 
neuronska mreža, uz tri konvolucijska sloja i tri sloja udruživanja primjenom rektificirane 
linearne aktivacije najučinkovitija u pogledu klasifikacije, s klasifikacijskom točnošću od 
0,9976. U usporedbi s neuronskim mrežama stroja potpornih vektora (SVM) i radijalne 
bazne funkcije (RBF), konvolucijska neuronska mreža ne samo da štedi mnogo vremena 
jer ne zahtijeva ručno izdvajanje značajki, već pruža i veću klasifikacijsku točnost.

Ključne riječi:
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1. Introduction

Pavement condition detection is crucial for the maintenance 
and management of road infrastructure. The accurate and 
timely evaluation of pavement conditions helps identify areas 
that require maintenance, thereby preventing minor issues from 
developing into significant structural problems. This proactive 
approach extends the lifespan of roadways and ensures the 
safety and comfort of users by reducing the risk of accidents 
caused by poor road conditions. Furthermore, effective 
pavement condition assessment can lead to significant cost 
savings for local authorities and transportation agencies by 
optimising maintenance schedules and resource allocation. 
As urbanisation and traffic volumes increase, the demand for 
robust and scalable pavement-monitoring solutions becomes 
even more critical in supporting sustainable infrastructure 
development [1-4].
As attention to the management and maintenance of road 
infrastructure increases and the diversity of data collection 
devices grows, health monitoring has been widely applied in the 
field of pavements. Currently, three methods are widely used: 
3D reconstruction, vision-based detection, and vibration-based 
detection.
Three-dimensional (3D) reconstruction methods can be further 
classified into 3D laser scanning methods, stereo methods, and 
visualisation using a true depth camera. Chang et al. [5] and Li et 
al. [6] used 3D laser scanning technology to detect potholes in 
real-time. Wang [7] and Hou et al. [8] used stereovision methods 
to detect road potholes, achieving good results. Joubert et al. [9] 
and Mozzam et al. [10] used Microsoft’s Kinect camera to obtain 
three-dimensional information about potholes. However, 3D 
laser scanning technology and stereo vision methods have not 
been widely applied due to the relatively high cost of equipment 
and the complexity of calculations and processing in the later 
stages.
Vision-based detection methods are intuitive and have been 
widely used in civil engineering inspections in recent years. 
Koch and Brilakis [11] presented a method for automated 
pothole detection in asphalt pavement images based on 
a histogram threshold successfully applied using MATLAB 
software. Hoang [12] used SVM and ANN to build a pothole 
detection model; 89 % classification accuracy was achieved 
using SVM. Eisenbach et al. [13] used a mobile mapping 
system, S.T.I.E.R., to detect road damage, such as cracks, 
potholes, and patches, with an accuracy exceeding 90 %. Li 
et al. [14] classified pavement cracks into four categories 
(longitudinal, transverse, block, and alligator cracks); four 
CNNs with different structures were applied, and the 
classification precision exceeded 0.9. In recent years, with 
the development of object detection technology, several 
approaches have been proposed for pavement condition 
monitoring and damage detection, achieving satisfactory 
accuracy [15, 18]. Vision-based methods offer advantages in 
rapid identification and damage localisation. However, they 

are not well integrated with the mechanical response of the 
pavement to provide the initial indication of the health of a 
particular roadway section.
A considerable amount of information can be obtained from 
acceleration signals, such as in human motion recognition 
[19, 22], structural health monitoring [23, 25], and seismic 
analysis [26, 28]. Yu and Yu [29] proposed that road conditions 
can be assessed using acceleration signals obtained during 
driving. Erikson et al. [30] described a pothole patrol 
system that uses a machine learning algorithm to detect 
pavement potholes. Mednis et al. [31] developed a method 
for monitoring potholes using acceleration sensors inside 
smartphones, with a real positive rate of 90 %. Fox et al. 
[32] collected acceleration data during driving and proposed 
a machine-learning-based pothole detection method that 
achieved an experimental accuracy of 0.889. Bhatt et al. 
[33] compared the classification performance of gradient 
boosting and SVM for acceleration signals, and the results 
showed that the accuracy of these two classifiers for 
identifying pavement potholes was 92.02 % and 92.9 %, 
respectively. Du et al. [34] distinguished abnormal pavement 
types using acceleration data via the k-nearest neighbour 
(KNN) algorithm; the accuracy exceeded 0.9. Yang and Zhou 
[35] analysed the acceleration data in the time and frequency 
domains and detected transverse cracks. Egaji et al. [36] 
proposed a machine-learning model for pothole detection 
using acceleration data, with random forest and KNN showing 
the best performance. Zhang et al. [37] indicated that road 
surface roughness could be evaluated using an acceleration 
sensor built into a smartphone, and the experimental results 
showed that the error rate was less than 10 %.
Among the studies mentioned above, most were threshold- 
or machine-learning-based approaches. The former is 
designed to set a threshold for acceleration; as soon as the 
acceleration value exceeds this threshold, the pavement is 
considered to have a pothole. The accuracy of this method 
cannot be guaranteed, and it cannot distinguish other 
situations that lead to sudden changes in acceleration 
(e.g. driving over speed bumps). Machine learning-based 
methods for processing data are generally divided into two 
steps: feature extraction and classification. Although there 
is faster speed and higher accuracy in the second stage, the 
feature extraction operation adds complexity and reduces 
the efficiency of the entire process. In terms of detection 
equipment, intelligent, economical, and portable technologies 
are being developed. Currently, smartphones can compete 
in some aspects of structural health monitoring and enable 
public participation [38, 39].
To summarise the previous discussion, we noted that 
acceleration signals respond better to the mechanical properties 
of pavements. Smartphones are widely available portable 
devices that enable public participation and large-scale data 
collection and analysis. Therefore, this study proposes a public-
participation-based pavement acceleration data classification 
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method for pavement condition detection that better serves the 
management and maintenance of transportation infrastructure. 
In terms of devices, the widespread availability of bicycles 
and smartphones provides favourable conditions for public 
participation. In terms of data recognition, we propose the use 
of convolutional neural networks (CNNs) for automatic feature 
extraction and classification without the need for manually 
designing and extracting features, as required in traditional 
machine learning methods. This approach has not been 
proposed in the past and is the focus of this study.

2. Methodology

To complete this study, we first used bicycles, which are still 
widely used, as carriers and smartphones fixed at the front as 
acceleration acquisition devices. Next, cycling through smooth 
pavement, bumpy pavement, potholes, and speed bumps at a 
uniform speed and recording the X-, Y-, and Z-axes acceleration 
data in three directions using an application called Orion CC. 
Finally, we used the CNN, SVM, and RBF neural networks to 
classify the four different acceleration signals and compared 
the classification performances of the three algorithms.

2.1. Dataset

As shown in Figure 1, the device used in this study was an iPhone 
8 Plus, which was fixed at the front of the bicycle to collect 
acceleration data. To reduce the workload of CNN training, we 
analysed the acceleration of the Z-axis alone so that the Z-axis 
was perpendicular to the ground direction when the mobile 
phone was fixed. However, due to the influences of turning, 
tilting, and vibration, the Z-axis was not always perpendicular 
to the ground during actual data acquisition. Therefore, the 
acceleration data in the X-, Y-, and Z-axes were still included in 
the dataset.
The purpose of this study is to identify pavement conditions. Not 
only will the potholes cause acceleration changes, but the speed 
bump and bumpy pavement will cause significant changes 
in the acceleration. Therefore, the final acceleration dataset 

included smooth pavement, potholes, uneven pavement, and 
speed bumps (Figure 2). When collecting the acceleration data, 
the speed was set at 10 to 15 m/s, the sampling frequency 
was 100 Hz, and the sampling time was 5 s. Each time-series 
signal contained 500 elements. Each contained three directions: 
X, Y and Z. 422 groups of data were collected: 108 groups for 
bumpy pavements, 99 groups for speed bumps, 113 groups 
for smooth pavements, and 102 groups for potholes. Figure 3 
shows the original acceleration time-domain data collected by 
the smartphone and the acceleration frequency-domain data 
obtained using the fast Fourier transform.

Figure 1. Experimental devices and Orion CC

2.2. Convolutional Neural Network

The most significant difference between a CNN (Convolutional 
Neural Network) and a traditional artificial neural network is 
that the addition of convolution and pooling layers. As shown 
in Figure 4, the ANN (Artificial Neural Network) includes an input 
layer, hidden layer and output layer. Neurons are the most 
basic structure of ANNs. Each neuron is considered a node. 
Neighbouring layers of neurons connect, whereas there is no 
connection between neurons within the same layer. 

Figure 2. Examples of Bumpy pavement, smooth pavement, potholes, and speed bump
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Figure 4. �Examples of Acceleration data in Time domain and Frequency 
domain

ANNs process complicated problems slowly. For example, when 
processing a 28 × 28 black-and-white image in the MNIST 
dataset, if the number of nodes in the first hidden layer is 500, 
then 392,500 parameters are required in the entire connection 
layer. A black-and-white image can be regarded as a two-
dimensional matrix composed of data. When the number of nodes 
is excessively large, the training speed of the ANN decreases. If 
overfitting occurs, the accuracy will also be affected.
CNN was first proposed by Lecun et al. [40], achieving 99.7 % 
accuracy on the MNIST dataset. CNN increases matrix depth 
through convolution and pooling layers, reduces dimensionality 

Figure 3. Examples of Acceleration data in Time domain and Frequency domain (x, y, z axes)
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and the number of parameters used 
for operation, and is more sensitive to 
complex data and matrices, which can 
improve accuracy. The time-acceleration 
data used in this study can be regarded 
as a one-dimensional matrix. As shown 
in Table 1, five CNNs were designed to 
address this issue. CNN0, CNN1, and 
CNN2 had the same network structure 
but different activation functions. CNN3 
and CNN4 reduced and increased the 
number of convolution and pooling layers, 
respectively. Figure 5 illustrates the 
general working process using CNN0 as 
an example; there are 422 groups of input 
data, each of which contains 500 elements, 
including three channels of the X-, Y-, and 
Z-axes. Through three convolution layers 

Layers Input shape Kernel size Kernel number Strides Padding Activation Output shape

CNN0
/CNN1
/CNN2

Conv1 (500,3) 10 16 1 Same ReLu/tanh/Sigm (500,16)

Pooling1 (500,16) 4 None 4 Valid None (125,16)

Conv2 (125,16) 10 32 1 Same ReLu/tanh/Sigm (125,32)

Pooling2 (125,32) 4 None 4 Same None (32,32)

Conv3 (32,32) 10 64 1 Same ReLu/tanh/Sigm (32,64)

Pooling3 (32,64) 4 None 4 Valid None (8,64)

Flatten (8,64) None None None None None (512)

Dense1 (512) None None None None ReLu/tanh/Sigm (128)

Dense2 (128) None None None None Softmax (4)

CNN3

Conv1 (500,3) 10 16 1 Same ReLu (500,16)

Pooling1 (500,16) 4 None 4 Valid None (125,16)

Conv2 (125,16) 10 32 1 Same ReLu (125,32)

Pooling2 (125,32) 4 None 4 Same None (32,32)

Flatten (32,32) None None None None None (1024)

Dense1 (1024) None None None None ReLu (128)

Dense2 (128) None None None None Softmax (4)

CNN4

Conv1 (500,3) 10 16 1 Same ReLu (500,16)

Pooling1 (500,16) 4 None 4 Valid None (125,16)

Conv2 (125,16) 10 32 1 Same ReLu (125,32)

Pooling2 (125,32) 4 None 4 Same None (32,32)

Conv3 (32,32) 10 64 1 Same ReLu (32,64)

Pooling3 (32,64) 4 None 4 Valid None (8,64)

Conv4 (8,64) 4 128 1 Valid ReLu (5,128)

Pooling4 (5.128) 2 None 2 Valid None (2.128)

Flatten (2.128) None None None None None (256)

Dense1 (256) None None None None ReLu (128)

Dense2 (128) None None None None Softmax (4)

Table 1. Details of CNNs

Figure 5. Examples of Acceleration data in Time doma (TD) in and Frequency domain (FD)
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and three pooling layers, a matrix of size 8 × 1 × 64 is output, with 
64 representing the depth. It is then transformed into a vector of 
512 elements through the flattening layer. Finally, classification is 
performed through the final two dense layers.

2.2.1. Convolution layer

The convolution layer was used to expand the dimensions of the 
matrix. The convolution layer consisted of a convolution kernel. 
The kernel depth must be equal to that of the input matrix. 
Taking the Conv2 layer as an example, the input size was 125, 
the depth was 16, the convolution kernel size and depth were 
10 and 16, respectively, and the number of kernels was 32. Once 
convoluted, the kernel moves one step from top to bottom and 
convolves with the input matrix to generate a new matrix with 
a depth of 32. If the padding is set to “same”, the output vector 
length remains the same as the input. If the padding is “valid”, 
the output length is 125-10+1 = 116. Figure 6(a) illustrates the 
principle of convolution layers with a simple column vector. 

2.2.2. Pooling layer

The primary function of the pooling layer is to reduce the 
dimensions of the input matrix and extract features. As mentioned 
previously, after the Conv2 operation is completed, the matrix is 
input into the pooling layer. The size is 125; the kernel size and 
strides are all 4, and from top to bottom, a maximum value is 
selected for every four elements. If the padding is the “same”, 125 
is padded to 128, making it divisible by 4, and the output size is 
32. If the padding is “valid”, the integer part after division is taken, 
resulting in 31. Figure 6.b shows the principle of the pooling layer 
with the output shown in Figure 6.a.

2.2.3. Dense layer

The dense layer functions as a “classifier” in the entire CNN. 
If the operations of the convolution layer, pooling layer and 
activation function map the original data to the hidden layer 
feature space, the dense layer maps the learned “distributed 
feature representation” to the sample label space. In Figure 
6, after Pooling3 and flattening, the input data are expanded 
into a vector of 1 × 512, 512 nodes are processed by Dense1 

to generate a vector of 1 × 128, and the final 1 × 4 vector is 
obtained by the softmax function in Dense2, corresponding to 
the four pavement condition categories.

2.2.4. Activation functions

An activation function is used in the convolutional and dense 
layers. For the layer described in Figure 6, the activation function 
is not represented when convolution simplicity and intuitiveness 
are prioritised. The activation function activates a portion of the 
neurons in the network and transmits the activation information 
to the next layer of the neural network. Using the neural network 
shown in Figure 5 as an example, if the activation function is not 
added, the output of the first node of the first hidden layer will 
be y = x1w11+x2w13; however, this classification method cannot 
solve the problem of linear inseparability, and the activation 
function introduces nonlinear factors to address the inadequate 
expression of inadequate expression of the linear model. Using 
Figure 5 as an example and assuming the activation function is 
f (x), the output is y = f (x1w11 + x2w13). As shown in Figure 7, the 
standard nonlinear activation functions are sigmoid, tanh, and 
ReLU. ReLU is the most widely used.

Figure 7. �Examples of Acceleration data in Time domain and Frequency 
domain

2.3. Support vector machine (SVM)

The SVM was first proposed by Cortes and Vapnik in 1995 [41]. 
When addressing classification problems, the primary objective 

is to find a hyperplane that separates the 
training sample points while minimising 
classification error. In cases of linear 
separability, one or more hyperplanes 
can fully separate the training samples. 
The goal of SVM is to find the optimal 
solution.
Figure 8 shows a classification 
problem for two-dimensional data in 
which the hyperplane is a straight line. 
When dealing with three-dimensional 
spatial data, a hyperplane becomes Figure 6. Examples of Convolution layer and pooling layer: a) Convolution layer; b) Pooling layer
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a 2D plane. The hyperplane can be described with the 
following formula.

ωtx + b = 0

gdje x predstavlja dvodimenzijske koordinate točaka, a Z where 
x represents the two-dimensional coordinates of the points, 
and Z represents the hyperplane. Z1 and Z2 are the nearest 
parallel lines to Z for all samples. The distance between Z1 and 
Z2 is the classification margin between the two sample types, 
and the training sample points on Z1 and Z2 are called support 
vectors. The goal is to find the vector ωt and b through training 
so as to maximise the distance between Z1 and Z2 and achieve 
optimal classification.
A kernel function is used when the problem is linearly 
inseparable [42]. The essential idea behind using a kernel 
function to solve the problem of linear inseparability is to map 
the original sample into a high-dimensional space, allowing for 
linear separation in the high-dimensional feature space. Then, 
the linear classifier SVM is applied for classification. LIBSVM, 
an SVM software package developed by Taiwan University [43], 
was used to construct the classification model.

2.4. �Radical basis function neural network (RBF 
Neural Network)

The concept of the RBF Network was presented by Broomhead 
and Lowe in 1988 [44]. As shown in Figure 9, the RBF neural 
network is a three-layer forward network with a single hidden 
layer. The first layer is the input layer, which is composed of 
signal source nodes. The second layer is the hidden layer, and 
the number of nodes in the hidden layer depends on the specific 
problem being addressed. The activation function of neurons in 
the hidden layer, namely the radial basis function, is a radially 
symmetric and attenuated nonlinear function of the central 
point. The commonly used activation function is generally a 
Gaussian function. The third layer is the output layer, which 
corresponds to the input and uses a linear optimisation strategy.
The main idea is to use RBF as the “basis” to form the hidden 
layer space. The hidden layer transforms low-dimensional 

data into a high-dimensional space, allowing a linearly non-
separable problem to be separated linearly in this space. The 
RBF network model and activation function can be expressed 
using the following formulas (1) and (2):

, (j = 1, ..., p)	 (1)

	 (2)

where ui is the central point obtained using the k-means 
algorithm. ϕ is the Gaussian function used as an activation 
function, σ can be calculated by the KNN algorithm, and wij is 
the weight.

3. Pavement condition detection

3.1. Detection results using one-dimensional CNN

In this study, CNN was trained using Python. The original time-
domain acceleration data were used directly during the training. 
The number of channels was set to three, corresponding 
to the X-, Y-, and Z-axes. Of the dataset, 80 % were used for 
training, 20 % were used as the validation set, and 422 groups 
of original acceleration data were used to test the classification 
performance of the model. The training set was used to fit and 
construct the model, which was preliminarily evaluated using 
the validation set. 
The batch size represents the number of samples trained in each 
step. The learning rate determines the convergence speed of the 
model. In this study, the batch size and learning rate were set to 
10 and 0.0001, respectively. The epoch was set to 100, and an 
epoch was trained once with all 337 samples in the training set; 
therefore, the iteration number was 3370. Figure 10(a) and (b) 
show the curves of loss and accuracy versus iterations for CNN0. 
Accuracy is the ratio of the number of correctly classified samples 
to the total number of samples. The higher the accuracy, the better 
the classification performance of the model. Loss measures 
the degree of inconsistency between the predicted and actual 
values; it is a non-negative real-valued function. The smaller 

Figure 8. Principle of SVM Figure 9. Principle of RBF neural network
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the loss function, the more robust the model. As the number of 
iterations increased, the loss value decreased continuously and 
stabilised at the end. It shows that the model has converged. 
Simultaneously, the accuracy continued to grow; the training 
accuracy and validation accuracy of CNN0 reached 1.00 and 
0.99, respectively, and the test accuracy reached 0.9976, with 
421 samples correctly classified. Details of the training results of 
CNN0-CNN4 are listed in Table 2, including the Precision, Recall 
and Accuracy. The calculation method is as follows.

Precision = 	 (3)

Recall = 	 (4)

where true positive (TP) and false positive (FP) are the numbers 
of correctly classified and incorrectly classified samples as 

positive. The false negative (FN) is 
the number of incorrectly classified 
negative samples. Taking potholes in 
CNN0 as an example, 101 groups were 
correctly identified out of 102, with one 
misclassified as a speed bump, and no 
other pavement types were misclassified 
as potholes. Therefore, 
TP = 101, FP = 0, FN = 1, 
Precision = 101/101 = 1.0000, 
Recall = 101/102 = 0.9907.

Table 2 shows that a change in the 
activation function has a significant effect 
on CNN performance. The accuracy of 
CNN1 using tanh and CNN2, using the 

sigmoid function, were 0.9900 and 0.8571, respectively. This is 
because, during backpropagation, the weight w is calculated using 
a differential. In tanh and sigmoid, when the input value is large or 
small, the output is almost smooth, and the gradient is minimal, 
making weight updates difficult. This problem is also known as 
gradient saturation. The output interval of tanh is (-1,1), and the 
entire function is centred at zero. Gradient saturation is less severe 
than the sigmoid function; thus, CNN1 has higher accuracy. For 
the popular ReLU function, when the input is positive, there is 
no gradient saturation problem, and because ReLU has a simple 
linear relationship, the calculation speed is much faster. After 
removing the convolution and pooling layers, the accuracy of CNN3 
was reduced to 0.9952; however, it still exhibited satisfactory 
classification performance. CNN0 and CNN4 exhibited the best 
classification performance; the correct classification instances 
were all 421, and the accuracy was 0.9976. Considering that CNN0 
had a simpler network structure, we believe that CNN0 exhibited 
the best classification performance.

Figure 10. �Training and validation results of CNN0: a) Loss-Iteration curve; b) Accuracy-
Iteration curve

CNN0 CNN1 CNN2 CNN3 CNN4

TRA 1.0000 1.0000 0.9100 1.0000 1.0000

VDA 0.9900 0.9700 0.8500 0.9800 0.9900

TEA 0.9976 0.9900 0.8571 0.9952 0.9976

CCI 421 417 361 420 421

BPP 1.0000 0.9727 0.8774 0.9907 1.0000

BPR 1.0000 0.9907 0.8611 0.9907 0.9907

SBP 1.0000 1.0000 0.7578 1.0000 1.0000

SBR 1.0000 0.9898 0.9798 1.0000 1.0000

SPP 0.9900 1.0000 0.9072 1.0000 1.0000

SPR 1.0000 0.9912 0.7788 0.9912 1.0000

PTP 1.0000 0.9804 0.9326 0.9902 0.9902

PTR 0.9902 0.9804 0.8137 1.0000 1.0000

TRA: Training Accuracy, VDA: Validation Accuracy; TEA: Test Accuracy; CCI: correct classification instances; BPP: bumpy pavement precision; BPR: 
bumpy pavement recall; SBP: speed-bump precision; SBR: speed-bump recall; SPP: smooth pavement precision; SPR: smooth pavement recall; 
PTP: pole precision; PTR: pothole recall

Table 2. Details of the results of CNNs*
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Finally, to display the classification performance of the model 
more intuitively, we adopt a visualisation tool named “t-SNE 
(t-distributed stochastic neighbour embedding)”, which can 
nonlinearly reduce the dimension of data, especially for the 
visualisation of high-dimensional data. It was used to visualise 
the raw and output data from the CNN. As shown in Figure 11, 
after dimensionality reduction, there is no apparent distinction 
between different classes on the two-dimensional plane. 
However, after the CNN0 classification, there were noticeable 
differences among the other classes, showing that CNN0 had 
an excellent classification performance.

3.2. �Detection results using machine learning algorithm

3.2.1. Dataset

In this study, two traditional machine-learning algorithms, 
an SVM and a Radial Basis Function (RBF) neural network, 

were selected for comparison with a CNN. As mentioned 
before, a CNN uses convolution and pooling layers to 
extract features and then classifies them through dense 
layers. Therefore, it was not necessary to extract features 
prior to inputting the data. While SVM and RBF networks 
are classifiers, they must extract features before inputting 
the acceleration data. 
In contrast to CNN, the datasets used in the SVM and RBF 
networks consist of feature values. 26 features of the time 
and frequency domains were calculated using MATLAB, and 
each feature contained three directions, X, Y, and Z; thus, 
so a total of 78 attribute values were obtained. Then, 28 
of them were chosen by “CfsSubsetEval” in WEKA. The 
attribute values listed in Table 3, 1-57 are from the time 
domain (TD), and the others are from the frequency domain 
(FD). 
Finally, we obtained a dataset consisting of a 422 × 29 
matrix, the last column of which was labelled.

Table 3. Attribute types

Figure 11. Two-dimensional display of raw data and output data (1-speed bump, 2-potholes, 3-bumpy pavement, 4-smooth pavement)

Number Attribute Number Attribute

1-3 TD Mean (x/y/z) 40-42 TD Pulse factor (x/y/z)

4-6 TD Variance (x/y/z) 43-45 TD Margin (x/y/z)

7-9 TD Correlation coefficient (xy/xz/yz) 46-48 TD Kurtosis (x/y/z)

10-12 TD Maximum (x/y/z) 49-51 TD Waveform factor

13-15 TD Minimum (x/y/z) 52-54 TD Skewness (x/y/z)

16-18 TD Standard deviation (x/y/z) 55-57 FD Mean (x/y/z)

19-21 TD Peak to a peak value (x/y/z) 58-60 FD Standard deviation (x/y/z)

22-24 TD Median (x/y/z) 61-63 FD Maximum (x/y/z)

25-27 TD Absolute peak value (x/y/z) 64-66 FD Peak frequency (x/y/z)

28-30 TD Absolute mean (x/y/z) 67-69 FD Peak factor (x/y/z)

31-33 TD Root mean square value (x/y/z) 70-72 FD Kurtosis (x/y/z)

34-36 TD Interquartile range (x/y/z) 73-75 FD Skewness (x/y/z)

37-39 TD Peak factor (x/y/z) 76-78 FD Entropy (x/y/z)

Selected 
attributes 2, 3, 5, 8, 9, 19, 24, 26, 30, 34, 35, 36, 38, 39, 45, 46, 47, 50, 51, 52, 57, 58, 59, 64, 65, 66, 68, 69
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3.2.2. Detection results

Two different activation functions of the SVM (Radial Basis Function 
and Polynomial) and the RBF neural network were used, and a ten-
fold cross-validation method was adopted for the classification 
test. The results are shown in Table 4–6. The numbers of correctly 
classified instances were 387, 405, and 417, and the accuracies 
were 0.9171, 0.9597, and 0.9858, respectively.

3.3. Comparison

CNN0, which had the best classification performance among 
the CNNs, was selected for comparison with SVM and RBF 
neural networks. The results are listed in Table 7. It can be 
clearly seen that CNN0 has the best effect. CNN0 achieved an 
accuracy of 0.9976, which was 8.1 %, 3.8 %, and 1.2 % higher 
than those of the other three algorithms. This shows that CNN 

Classified as: Bumpy pavement Speed bump Smooth pavement Pothole

Bumpy pavement 91 7 8 2

Speed bump 0 98 0 1

Smooth pavement 6 3 104 0

Pothole 1 7 0 94

Classified as: Bumpy pavement Speed bump Smooth pavement Pothole

Bumpy pavement 99 0 2 7

Speed bump 0 97 0 2

Smooth pavement 2 0 110 1

Pothole 2 1 0 99

Classified as: Bumpy pavement Speed bump Smooth pavement Pothole

Bumpy pavement 105 0 0 3

Speed bump 0 98 0 1

Smooth pavement 1 0 112 0

Pothole 1 0 0 101

Table 4. Test results using SVM (Kernel function: Radial basis function)

Table 5. Test results using SVM (Kernel function: Polynomial)

Table 6. Test results using RBF Network

Table 7. Details of the comparison results

CNN0 SVMR SVMP RBF

TA 0.9976 0.9171 0.9597 0.9858

CCI 421 387 405 416

BPP 1.0000 0.9286 0.9612 0.9813

BPR 1.0000 0.8426 0.9167 0.9722

SBP 1.0000 0.8522 0.9898 1.0000

SBR 1.0000 0.9899 0.9798 0.9899

SPP 1.0000 0.9286 0.9821 1.0000

SPR 0.9907 0.9204 0.9735 0.6612

PTP 0.9902 0.9691 0.9083 0.9619

PTR 1.0000 0.9216 0.9706 0.9902

TA: Test Accuracy, CCI: correctly classified instances, BPP: bumpy pavement precision, BPR: bumpy pavement recall, SBP: speed bump precision, 
SBR: speed bump recall, SPP: smooth pavement precision, SPR: smooth pavement recall, PTP: pole precision, PTR: pole recall.
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can not only classify objects in images but can also be applied 
to the detection of acceleration data. Moreover, compared with 
the traditional machine learning algorithm, CNN does not need 
to extract features manually, making the entire recognition 
and classification process more efficient. CNN shows strong 
potential for application to one-dimensional data problems.

4. Discussion

This paper proposes a novel pavement condition detection 
method, and its contributions are as follows. This study 
proposes a pavement condition detection method based on 
public participation. By utilising widely available bicycles and 
smartphones, the general public can participate in data collection 
and pavement condition assessments, allowing professionals 
to conduct further evaluations based on summarised data 
without the need for on-site inspections, which can significantly 
improve operational efficiency.
In terms of the technical means of detection, we proposed 
the use of a one-dimensional CNN. Unlike other studies, the 
application of a 1D-CNN does not require setting specific 
thresholds or manually designing and extracting features. This 
study also has limitations that need to be addressed in future 
research:
-- The generalisability of the proposed method has not yet been 

tested. The data collection in this study was mainly carried 
out on a university campus, and more training data, as well 
as more road condition categories, such as rutting, uphill, and 
downhill, are needed to achieve better practical results.

-- Acceleration data at multiple riding speeds were not 
collected. In real-world public participation, the riding speeds 
of different individuals may vary significantly; therefore, 
acceleration data at different riding speeds must be collected. 
Additionally, smartphone models may impact the final data, 
necessitating analysis to analyse the data collected from 
different phone models.

5. Conclusion

A pavement condition detection method using acceleration data 
classification based on CNNs was proposed. In the experiment, 

422 groups of acceleration data, including the X-, Y-, and Z-axes, 
were collected using a smartphone and bicycle, covering bumpy 
pavement, speed bumps, smooth pavement, and potholes. Five 
1D-CNNs were designed and trained as detectors, leading to 
the following conclusions.
-- For the acceleration data classification and recognition task 

in this study, applying the ReLU activation function has 
better performance.

-- Adding convolutional layers and pooling layers will improve 
the feature extraction and classification ability.

-- The 1D-CNN with two convolutional layers, two pooling 
layers, and a ReLU activation function achieved a classification 
accuracy of 0.9976, which was the best performance among 
the five CNNs.

-- Using CNN, there is no need to design and extract feature 
values manually, so it is more efficient than traditional 
machine learning algorithms

-- Among the machine learning algorithms applied in this study, 
RBF neural networks demonstrated higher classification 
accuracy.

The novelty of this study is the idea of assessment based on 
public participation; instead of focusing CNN solely on image 
data, we used it to handle time-series acceleration data and 
achieved satisfactory detection results. This study had some 
limitations in terms of generalisability and experimental design. 
In future research, additional data will be collected to improve 
the generalisation ability of the network model and conduct 
data collection experiments with different riding speeds and 
smartphones. Additionally, we will refine the application of 
pavement acceleration analysis so that it can be implemented 
on a small scale as soon as possible.
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